micromechanics
micromechanics,
the combination of minuscule electrical and mechanical components in a single device less than 1 mm across, such as a valve or a motor. Although micromechanical production processes and applications are still in the developmental stage, efforts have begun to develop machines—called micromachines or micromechanisms—1,000 times smaller. Nanotechnology is concerned with atomic- and molecular-scale devices. Such devices can be constructed using a scanning tunneling microscopescanning tunneling microscope(STM), device for studying and imaging individual atoms on the surfaces of materials. The instrument was invented in the early 1980s by Gerd Binnig and Heinrich Rohrer, who were awarded the 1986 Nobel prize in physics for their work.
..... Click the link for more information. . A single atom has been used as an electrical switch and an individual molecule used to convert alternating current into direct current. Cluster chemistry has produced small balls and tubes (see fullerenefullerene,
any of a class of carbon molecules in which the carbon atoms are arranged into 12 pentagonal faces and 2 or more hexagonal faces to form a hollow sphere, cylinder, or similar figure.
..... Click the link for more information. ) containing between 10 and 1,000 atoms that may be useful in forming nano-thin wires and transistorstransistor,
three-terminal, solid-state electronic device used for amplification and switching. It is the solid-state analog to the triode electron tube; the transistor has replaced the electron tube for virtually all common applications.
..... Click the link for more information. that operate on just a few electrons. A third nanotechnological approach is to grow such devices from proteins, DNA, or synthesized organic molecules. Nanotechnologies are still in the laboratory stage, but practical applications are envisioned in such diverse areas as computers, pharmaceuticals, and metrology. For example, American chemist George M. Whitesides has used hydrocarbon molecules, called alkanethiols, that are self-assembling (i.e., arrange themselves into ordered, functioning entities without human intervention, as do living cells) to form ordered rows on a gold surface; such a process could be used to produce much thinner lines on an integrated circuit than can be accomplished using conventional techniques.
Bibliography
See K. E. Drexler and C. Peterson, with G. Pergamit, Unbounding the Future: The Nanotechnology Revolution (1991); A. J. Bard, Integrated Chemical Systems: A Chemical Approach to Nanotechnology (1994); E. Regis, Nano: The Emerging Science of Nanotechnology (1995).