free energy
free energy
free energy
Noun | 1. | free energy - (physics) a thermodynamic quantity equivalent to the capacity of a physical system to do work; the units of energy are joules or ergs; "energy can take a wide variety of forms" |
单词 | free energy | |||
释义 | free energyfree energyfree energy
free energyfree energyorGibbs free energy,quantity derived from the relationships between heat and work studied in thermodynamicsthermodynamics,branch of science concerned with the nature of heat and its conversion to mechanical, electric, and chemical energy. Historically, it grew out of efforts to construct more efficient heat engines—devices for extracting useful work from expanding hot gases. ..... Click the link for more information. and used as a measure of the relative stability of a physical or chemical system, i.e., the tendency of the system to react or change. If the change in free energy, ΔG, is negative, the transformation of the system will occur spontaneously, since transitions in which the energy decreases are favored, whereas those in which it increases (ΔG positive) are not. The change in free energy for a given process at a particular temperature depends on three factors, as seen from the equation ΔG = ΔH − TΔS, where ΔH is the change in the enthalpyenthalpy , measure of the heat content of a chemical or physical system; it is a quantity derived from the heat and work relations studied in thermodynamics. As a system changes from one state to another the enthalpy change, ΔH, ..... Click the link for more information. of the system, T is the temperature in degrees Kelvin, and ΔS is the change in entropyentropy , quantity specifying the amount of disorder or randomness in a system bearing energy or information. Originally defined in thermodynamics in terms of heat and temperature, entropy indicates the degree to which a given quantity of thermal energy is available for doing ..... Click the link for more information. . A negative value of the enthalpy change indicates a decrease in the heat content of the system and contributes to a favorable value of the free energy; a positive entropy change indicates a decrease in the orderliness of the system and also contributes to a favorable value of the free energy, since a system tends to go from more ordered to less ordered states. It may happen that the change in enthalpy for the reaction is favorable but that of the entropy is unfavorable, or vice versa; in such a case the temperature is the deciding factor since it determines how much weight is given to the entropy change. For example, in the transition of liquid water to ice, the enthalpy change is favorable because heat is released in the process but the entropy change is unfavorable because the transition is to the more ordered, crystalline state. Below a temperature of 32°F; (273°K;) the enthalpy term, ΔH, is larger and the process is spontaneous, but at higher temperatures the entropy term, TΔS, predominates, and the transition does not occur. Although the free energy indicates whether or not a given reaction will occur, it gives no information about the speed of such a reaction. The reaction of hydrogen with oxygen to form water has a favorable, negative, free energy, but the reaction rate is so slow that without the presence of a catalyst it is not observable. Scientists use tables listing the standard free energy, ΔG°, of various compounds; the standard free energy is the change in free energy when one mole of the compound is formed at 25°C; and 1 atmospheric pressure. Free energyA term in thermodynamics which in different treatments may designate either of two functions defined in terms of the internal energy E or enthalpy H, and the temperature-entropy product TS. The function (E – TS) is the Helmholtz free energy and is the function ordinarily meant by free energy in European references. The Gibbs free energy is the function (H – TS). For the Lewis and Randall school of American chemical thermodynamics, this is the function meant by the free energy F. To avoid confusion with the symbol F as applied elsewhere to the Helmholtz free energy, the symbol G has also been used. Another development was the introduction of the name free enthalpy, with symbol G, for the Gibbs function. See Work function (thermodynamics) For a closed system (no transfer of matter across its boundaries), the work which can be done For constant temperature and pressure in a reversible process the decrease in the Gibbs function G for the system again corresponds to a free-energy change in the above sense, since it is equal to the work which can be done by the closed system other than that associated with its change in volume ΔV under the given constant pressure P. The relations shown in Eq. (2) can be formed since ΔH = ΔE + PΔV. Each of these free-energy functions is an extensive property of the state of the thermodynamic system. For a specified change in state, both ΔA and ΔG are independent of the path by which the change is accomplished. Only changes in these functions can be measured, not values for a single state. The thermodynamic criteria for reversibility, irreversibility, and equilibrium for processes in closed systems at constant temperature and pressure are expressed naturally in terms of the function G. For any infinitesimal process at constant temperature and pressure, -dG ≥ δwnet. If δwnet is never negative, that is, if the surroundings do no net work on the system, then the change dG must be negative or zero. For a reversible differential process, -dG > δwnet; for an irreversible process, -dG > δwnet. The free energy G thus decreases to a minimum value characteristic of the equilibrium state at the given temperature and pressure. At equilibrium, dG = 0 for any differential process taking place, for example, an infinitesimal change in the degree of completion of a chemical reaction. A parallel role is played by the work function A for conditions of constant temperature and volume. Because temperature and pressure constitute more convenient working variables than temperature and volume, it is the Gibbs free energy which is the more commonly used in thermodynamics. See Entropy, Thermodynamic principles Free Energya term used to refer to the Gibbs function and to the Helmholtz function, both of which are thermodynamic potentials. In Soviet usage, the term “free energy” is used primarily for the Helmholtz function. The Helmholtz free energy, also called the work function, is defined as the difference between the internal energy U of a thermodynamic system and the product of the system’s entropy S and temperature T. The quantity ST, which is subtracted from the internal energy when the free energy is found, is sometimes called the bound energy. free energy[¦frē ′en·ər·jē]free energyenergy[en´er-je]All activities of the body require energy, and all needs are met by the consumption of food containing energy in chemical form. The human diet comprises three main sources of energy: carbohydrates, proteins, and fats. Of these three, carbohydrates most readily provide the kind of energy needed to activate muscles. Proteins work to build and restore body tissues. The body transforms chemical energy derived from food by the process of metabolism, an activity that takes place in the individual cell. Molecules of the food substances providing energy pass through the cell wall. Inside the cell, chemical reactions occur that produce the new forms of energy and yield by-products such as water and waste materials; see also adenosine triphosphate. free en·er·gy (F),free en·er·gy(F) (frē en'ĕr-jē)free energythe amount of energy that is available for work when released in a chemical reaction. For example, when a molecule of ATP is hydrolysed to ADP + P, the free energy released is about 34 kJ.free energy
Synonyms for free energy
|
|||
随便看 |
|
英语词典包含2567994条英英释义在线翻译词条,基本涵盖了全部常用单词的英英翻译及用法,是英语学习的有利工具。