释义 |
generalization
gen·er·al·i·za·tion G0078300 (jĕn′ər-ə-lĭ-zā′shən)n.1. The act or an instance of generalizing.2. A principle, statement, or idea having general application.generalization (ˌdʒɛnrəlaɪˈzeɪʃən) or generalisationn1. a principle, theory, etc, with general application2. the act or an instance of generalizing3. (Psychology) psychol the evoking of a response learned to one stimulus by a different but similar stimulus. See also conditioning4. (Logic) logic the derivation of a general statement from a particular one, formally by prefixing a quantifier and replacing a subject term by a bound variable. If the quantifier is universal (universal generalization) the argument is not in general valid; if it is existential (existential generalization) it is valid5. (Logic) logic any statement ascribing a property to every member of a class (universal generalization) or to one or more members (existential generalization)gen•er•al•i•za•tion (ˌdʒɛn ər ə ləˈzeɪ ʃən) n. 1. the act or process of generalizing. 2. a general statement, idea, or principle. 3. a. a proposition asserting something to be true of all members of a class or of an indefinite part of that class. b. the process of obtaining such propositions. 4. the act or process of responding to a stimulus similar to but distinct from a conditioned stimulus. [1755–65] ThesaurusNoun | 1. | generalization - reasoning from detailed facts to general principlesinductive reasoning, generalisation, inductioncolligation - the connection of isolated facts by a general hypothesis | | 2. | generalization - an idea or conclusion having general application; "he spoke in broad generalities"generalisation, generalityidea, thought - the content of cognition; the main thing you are thinking about; "it was not a good idea"; "the thought never entered my mind"principle, rule - a basic generalization that is accepted as true and that can be used as a basis for reasoning or conduct; "their principles of composition characterized all their works" | | 3. | generalization - the process of formulating general concepts by abstracting common properties of instancesgeneralisation, abstractiontheorisation, theorization - the production or use of theories | | 4. | generalization - (psychology) transfer of a response learned to one stimulus to a similar stimulusstimulus generalisation, stimulus generalization, generalisationcarry-over, transfer of training, transfer - application of a skill learned in one situation to a different but similar situationirradiation - (Pavolvian conditioning) the elicitation of a conditioned response by stimulation similar but not identical to the original stimuluspsychological science, psychology - the science of mental life |
generalizationnoun generality, abstraction, sweeping statement, loose statement He was making sweeping generalizations to get his point across.Translationsgeneral (ˈdʒenərəl) adjective1. of, involving etc all, most or very many people, things etc. The general feeling is that he is stupid; His general knowledge is good although he is not good at mathematics. 普遍的 普遍的,总的 2. covering a large number of cases. a general rule. 一般的 一般的3. without details. I'll just give you a general idea of the plan. 大體的 大体的4. (as part of an official title) chief. the Postmaster General. (官員頭銜)長,長官(如:郵政署署長) ...长,首席的 noun in the British army, (a person of) the rank next below field marshal. General Smith. (英國)陸軍元帥以下的上將 (英国)陆军上将 ˈgeneralize, ˈgeneralise verb1. to make a general rule etc that can be applied to many cases, based on a number of cases. He's trying to generalize from only two examples. 概括,泛化 引出普遍性结论,推论 2. to talk (about something) in general terms. We should stop generalizing and discuss each problem separately. 籠統地談論 笼统地讲ˌgeneraliˈzation, ˌgeneraliˈsation noun 泛化, 概括 普遍化,概括 ˈgenerally adverb usually; by most people; on the whole. He is generally disliked; He generally wins. 一般地 一般地General Certificate of EducationGCEgeneral election an election in which the voters in every constituency are involved. 大選,普選 大选,普选 general practitionerGPgeneral store a shop that sells a wide range of goods. 百貨店 百货店,杂货店 as a general rule usually; in most cases. As a general rule, we don't employ unskilled workers. 一般說來 一般说来in general usually; in most cases; most of (a group of people etc). People in general were not very sympathetic; People were in general not very sympathetic. 一般地 一般地the general public the people of a town, country etc, considered as a group. 公眾 公众Generalization
generalization, generalisation1. Psychol the evoking of a response learned to one stimulus by a different but similar stimulus 2. Logic the derivation of a general statement from a particular one, formally by prefixing a quantifier and replacing a subject term by a bound variable. If the quantifier is universal (universal generalization) the argument is not in general valid; if it is existential (existential generalization) it is valid 3. Logic any statement ascribing a property to every member of a class (universal generalization) or to one or more members (existential generalization) Generalization (1) In physiology, generalization is the spread of excitation through the central nervous system of animals and humans. The process of generalization arises under the influence of impulses coming from the periphery (as a result of a strong stimulus, such as food, pain, or a new, undifferentiated stimulus that gives rise to an orientation reaction). Generalization of excitation along the cortex of the cerebral hemispheres occurs in the first stages of the formation of a conditioned reflex. (2) In pathology, generalization is the conversion of an initially limited infectious or neoplasmic process into an extensive one, with the appearance of foci in other organs. Generalization occurs through the blood channels and lymphatic pathways. Generalization does not include the gradual extension of the territory of a primary focus of affection, if it is not accompanied by the appearance of new foci in other organs.
Generalization a method of increasing knowledge by means of a mental transition from the particular to the general. The transition to a higher level of abstraction also usually corresponds to this method. An example of generalization is the transition from the observation of aggregates of individual objects to the mental classification of these objects into aggregates of equal number, which leads to the concept of natural numbers. One of the most important means of acquiring scientific knowledge, generalization makes it possible to derive general principles (laws) from the chaos of phenomena that obscures them, and to unify and identify in a single formula sets of different things and events. The two principal types of generalizations are distinguished by their semantic and epistemological content. The first type generates new semantic units (concepts)—that is, notions, laws, principles, and theories that are not determined by the initial semantic field (primary semantics). The second type does not generate such units and can yield only new variants of old values. Generalizations of the second type have a comparatively simpler structure than the first type and are often their limiting cases. The second type includes, in particular, extrapolation (for example, extension of the quantum interpretation of Planck’s law of thermal radiation to the field of light phenomena, which made it possible to explain the photoelectric effect). Incomplete induction is also classified as a generalization of the second type (for example, the extension to all substances of the experimentally known property of a number of substances to exist in three aggregate states). In addition, the second type includes the ∀-generalization of pure predicate logic, which is essentially a synonymous transition from A(x) to ∀xA(x), where the condition A(x) is interpreted as universality. The first type of generalization includes all theoretical generalizations, or generalizations by abstraction, which in the theory of cognition is reflected by the transition from some abstraction of the order n to abstractions of a higher order. In particular, this includes generalization by replacing constants with variables, which is natural for logic and which makes possible the isolation, in “pure form,” of such essences as property and relation. Theoretical generalization also includes generalization based on an idealized experiment that suggests speculative principles, such as the principle of inertia or the principle of relativity. In addition, it includes generalizations through identification in terms of a property, which makes it possible to isolate the common essence of phenomena perceived in different ways. (For example, magnetism, electricity, and light are merely different manifestations of the electromagnetic field.) The ∀-generalization of applied logic (Locke’s rule) is also a generalization of the first type. It is widely used in mathematical proofs, when, during the transition from a particular value of ξ to all ξ in the identification-abstraction interval, preservation of the truth of the predicate established for a particular value is ensured. This is always possible if the truth of the predicate depends not on the particular value of x, but only on its range of change as determined by the corresponding identification— that is, on the class of abstraction. (In this case the given particular value serves as a generalized representative, or standard, of the class of abstraction.) Here, in contrast to the ∀-generalization of pure logic, a new semantic context of generalization also arises. The original conventional interpretation of the premise is replaced by an interpretation of universality, and the concept of class of abstraction, as related to the content of the particular value, becomes part of the content of a subquantifier variable, making the quantifier “bound.” However, in cases where the class of abstraction coincides with the universal class, the ∀-generalization of applied logic passes into the ∀-generalization of pure logic. Historically, the development of concepts and theories has been expressed in the increase of knowledge by means of chains of generalizations, in which generalizations of the first or second type serve as links. Chains of generalizations reflect the sequential links of first-order essences with essences of the second, third, and higher orders. These links are different and, depending on their character, are represented by chains of generalizations retaining the semantics of the initial concepts or, on the other hand, by chains of generalizations that alter the primary semantics. The sequential generalization of the concept of number by the construction of systems of natural, integral, rational, real, and complex numbers may serve as an example. Characteristic of this chain, which retains the primary semantics, are expansions of the initial range that satisfy the principle of the constancy of formal laws, according to which the laws of operations defined for elements of the initial domain must be preserved for new elements in all subsequent expansions. However, the chain cannot be extended indefinitely. The arithmetic of transfinite quantitative numbers no longer satisfies this principle, but the resulting transition to the general concept of quantitative number leads to a new understanding of the arithmetic of natural numbers as the arithmetic of the powers of finite sets. The transition from classical logic to intuitionist logic and the successive transition from classical mechanics to relativistic mechanics and the general theory of relativity may serve as examples of a generalization chain of the second type. In such transitions, the more general theory may have a complete formulation independent of the less general theory, but it must contain the latter as a limiting case. This is the basic meaning of the principle of correspondence for chains of generalizations with changing primary semantics. REFERENCESPolya, G. Matemalika i pravdopodobnye rassuzhdeniia. Moscow, 1957. (Translated from English.) Davydov, V. V. Vidy obobshcheniia ν obuchenii. Moscow, 1972. Sachkov, Iu. V. “Protsessy obobshcheniia ν sinteze znanii.” In Sintez sovremennogo nauchnogo znaniia. Moscow, 1973. Pages 421–46. Matiushkin, A. M., and M. M. Novoselov. “Vidy obobshcheniia i problemy psikhologii obucheniia.” Voprosy psikhologii, no. 2, 1974.F. V. LAZAREV and M. M. NOVOSELOV generalization
generalization [jen″er-al-ĭ-za´shun] the formation of a general principle or idea; inductive reasoning.generalization of learning the application of previously learned concepts and behaviors to similar situations, a cognitive performance component of occupational therapy.gen·er·al·i·za·tion (jen'ĕr-ăl-i-zā'shŭn), 1. Rendering or becoming general, diffuse, or widespread, as when a primarily local disease becomes systemic. 2. The reasoning by which a basic conclusion is reached, which applies to different items, each having some common factor. gen·er·al·i·za·tion (jen'ĕr-ăl-ī-zā'shŭn) 1. Rendering or becoming general, diffuse, or widespread, as when a primarily local disease becomes systemic. 2. The reasoning by which a basic conclusion is reached, which applies to different items, each having some common factor. 3. Categorization that obscures differences between people or situations (e.g., age categories). Synonym(s): generalisation. LegalSeeGeneralgeneralization
Synonyms for generalizationnoun generalitySynonyms- generality
- abstraction
- sweeping statement
- loose statement
Synonyms for generalizationnoun reasoning from detailed facts to general principlesSynonyms- inductive reasoning
- generalisation
- induction
Related Wordsnoun an idea or conclusion having general applicationSynonymsRelated Wordsnoun the process of formulating general concepts by abstracting common properties of instancesSynonyms- generalisation
- abstraction
Related Wordsnoun (psychology) transfer of a response learned to one stimulus to a similar stimulusSynonyms- stimulus generalisation
- stimulus generalization
- generalisation
Related Words- carry-over
- transfer of training
- transfer
- irradiation
- psychological science
- psychology
|