chlorophyll
chlo·ro·phyll
C0315200 (klôr′ə-fĭl)chlorophyll
(ˈklɔːrəfɪl) orchlorophyl
chlo•ro•phyll
or chlo•ro•phyl
(ˈklɔr ə fɪl, ˈkloʊr-)n.
chlo·ro·phyll
(klôr′ə-fĭl)chlorophyll
Noun | 1. | ![]() |
单词 | chlorophyll | |||
释义 | chlorophyllchlo·ro·phyllC0315200 (klôr′ə-fĭl)chlorophyll(ˈklɔːrəfɪl) orchlorophylchlo•ro•phyllor chlo•ro•phyl(ˈklɔr ə fɪl, ˈkloʊr-)n. chlo·ro·phyll(klôr′ə-fĭl)chlorophyll
chlorophyll(ˈklorəfil) nounchlorophyllchlorophyll(klôr`əfĭl'), green pigment that gives most plants their color and enables them to carry on the process of photosynthesisphotosynthesis, process in which green plants, algae, and cyanobacteria utilize the energy of sunlight to manufacture carbohydrates from carbon dioxide and water in the presence of chlorophyll. Some of the plants that lack chlorophyll, e.g. ..... Click the link for more information. . Chemically, chlorophyll has several similar forms, each containing a complex ring structure and a long hydrocarbonhydrocarbon , any organic compound composed solely of the elements hydrogen and carbon. The hydrocarbons differ both in the total number of carbon and hydrogen atoms in their molecules and in the proportion of hydrogen to carbon. ..... Click the link for more information. tail. The molecular structure of the chlorophylls is similar to that of the heme portion of hemoglobin, except that the latter contains iron in place of magnesium. Within the photosynthetic cells of plants the chlorophyll is in the chloroplasts—small, roundish, dense protoplasmic bodies that contain the grana, or disks, where the chlorophyll molecules are located. Most forms of chlorophyll absorb light in the red and blue-violet portions of the visible spectrum; the green portion is not absorbed and, reflected, gives chlorophyll its characteristic color. Chlorophyll f absorbs near infrared wavelengths that are slightly beyond the red portion of the visible spectrum. Chlorophyll tends to mask the presence of colors in plants from other substances, such as the carotenoids. When the amount of chlorophyll decreases, the other colors become apparent. This effect can be seen most dramatically every autumn when the leaves of trees "turn color." ChlorophyllThe generic name for the intensely colored green pigments which are the photoreceptors of light energy in photosynthesis. These pigments belong to the tetrapyrrole family of organic compounds. Five closely related chlorophylls, designated a through e, occur in higher plants and algae. The principal chlorophyll (Chl) is Chl a, found in all oxygen-evolving organisms; photosynthetic bacteria, which do not evolve O2, contain instead bacteriochlorophyll (Bchl). Higher plants and green algae contain Chl b, the ratio of Chl b to Chl a being 1:3. Chlorophyll c (of two or more types) is present in diatoms and brown algae. Chlorophyll d, isolated from marine red algae, has not been shown to be present in the living cell in large enough quantities to be observed in the absorption spectrum of these algae. Chlorophyll e has been isolated from cultures of two algae, Tribonema bombycinum and Vaucheria hamata. In higher plants the chlorophylls and the above-mentioned pigments are contained in lipoprotein bodies, the plastids. See Carotenoid, Cell plastids, Photosynthesis Chlorophyll molecules have three functions: They serve as antennae to absorb light quanta; they transmit this energy from one chlorophyll to another by a process of “resonance transfer;” and finally, this chlorophyll molecule, in close association with enzymes, undergoes a chemical oxidation (that is, an electron of high potential is ejected from the molecule and can then be used to reduce another compound). In this way the energy of light quanta is converted into chemical energy. The chlorophylls are cyclic tetrapyrroles in which four 5-membered pyrrole rings join to form a giant macrocycle. Chlorophylls are members of the porphyrin family, which plays important roles in respiratory pigments, electron transport carriers, and oxidative enzymes. See Porphyrin It now appears that the chlorophyll a group may be made up of several chemically distinct Chl a species. The structure of monovinyl cholorophyll a, the most abundant of the Chl a species, is shown in the illustration. ![]() The two major pigments of protoplasm, green chlorophyll and red heme, are synthesized from ALA (δ-aminolevulinic acid) along the same biosynthetic pathway to protoporphyrin. ALA is converted in a series of enzymic steps, identical in plants and animals, to protoporphyrin. Here the pathway branches to form (1) a series of porphyrins chelated with iron, as heme and related cytochrome pigments; and (2) a series of porphyrins chelated with magnesium which are precursors of chlorophyll. See Hemoglobin Chlorophylls reemit a fraction of the light energy they absorb as fluorescence. Irrespective of the wavelength of the absorbed light, the emitted fluorescence is always on the long-wavelength side of the lowest energy absorption band, in the red or infrared region of the spectrum. The fluorescent properties of a particular chlorophyll are functions of the structure of the molecule and its immediate environment. Thus, the fluorescence spectrum of chlorophyll in the living plant is always shifted to longer wavelengths relative to the fluorescence spectrum of a solution of the same pigment. This red shift is characteristic of aggregated chlorophyll. Chlorophyllthe green pigment of plants, by means of which plants capture the energy of sunlight and effect photosynthesis (seePHOTOSYNTHESIS). It is localized in special cell structures—chloroplasts and chromatophores—and is associated with the proteins and lipids of the chloroplast membranes. The basic structural unit of the chlorophyll molecule is a magnesium complex of the porphyrin cycle; the high-molecular-weight alcohol phytol, which is attached to the propionic-acid radical in the IV pyrrole ring, gives chlorophyll the capacity to become fixed in the lipid layer of the chloroplast membranes. Higher plants and green algae contain chlorophylls a and b, brown algae and diatoms contain chlorophylls a and c, and red algae contain chlorophylls a and d. Photosynthesizing bacteria contain close analogs of chlorophyll known as bacteriochlorophylls. Structurally, chlorophyll is closely related to other natural porphyrin complexes with iron, namely, cytochromes, which are the respiratory pigments, and heme, the red pigment that gives blood its characteristic color. It is also related to prosthetic groups of certain enzymes, namely, peroxidase and catalase. The name “chlorophyll” was given in 1817 by the French chemists P. Pelletier and J. Caventou to a green alcohol solution of a mixture of plant pigments. In the early 20th century, the Russian scientist M. S. Tsvet (Tswett) was the first to distinguish chlorophylls a and b, using the chromatographic method, which he developed. The chemical structure of chlorophyll was elucidated by the German scientists R. Willstátter, A. Stoll (1913), and H. Fischer (1930–40). The complete synthesis of chlorophyll was effected by the American chemist R. Woodward. Chlorophyll’s role in photosynthesis was proved by the classic works of K. A. Timiriazev. The biosynthetic pathways of chlorophyll were elucidated by the American scientists D. Shemin and S. Granick, among others. The Soviet scientists T. N. Godnev and A. A. Shlyk made important contributions to the study of chlorophyll. The principal biosynthetic pathway of chlorophyll is determined by the condensation of two molecules of δ-aminolevulinic acid with the formation of porphobilinogen—a derivative of pyrrole, which as a result of a series of enzymatic steps yields protoporphyrin IX, a compound containing a porphyrin nucleus. From protoporphyrin is formed the immediate precursor of chlorophyll—protochlorophyllide, which already contains a magnesium atom. Chlorophyll is formed from protochlorophyllide by means of successive reactions of reduction and the addition of phytol. The reduction stage of protochlorophyllide is effected in the light in higher plants and in the dark in lower plants. In the chloroplasts and chromatophores a large part of the chlorophyll, whose content generally constitutes 0.5 to 1.5 percent of the dry weight, is found in the form of light-gathering “antennae,” while a smaller amount is found in the reaction centers, which participate directly in the photosynthetic electron-transfer chain. Upon absorbing a quantum of light, the chlorophyll molecule enters an excited state (a singlet state of excitation lasts about 10–9 sec), which may then pass to the triplet state, a long-lived excited state lasting as long as 10–3 sec. Chlorophyll molecules excited by light are capable of transferring an electron from a donor molecule to an acceptor molecule. The mechanisms of these reactions in model systems have been elucidated by the Soviet scientists A. A. Krasnovskii and V. B. Evstigneev, among others. The ability of excited chlorophyll to transfer electrons ensures the functioning of the reaction centers of the photosystems in the photosynthetic electron-transfer chain. The use of techniques involving spectral analysis and low temperatures has shown that in the initial photo stage, the bacteriochlorophyll and possibly the chlorophyll of the active center give up their electron to an acceptor molecule (ubiquinone, ferrodoxin). This initial process is bound to the chain of enzymatic reactions that lead to the formation of reduced pyridine nucleotides and adenosine triphosphate, which ensure the functioning of the carbon cycle. Thus, the light absorbed by chlorophyll is converted to the potential chemical energy of the organic photosynthetic products and molecular oxygen. The light absorbed by chlorophyll also produces other photobiological phenomena in cells; for example, it induces the generation of an electric potential on the membranes of the chloroplasts and influences the movement of unicellular organisms (phototaxis). Much attention is being focused on the properties of chlorophyll at various levels of molecular organization, inasmuch as these properties are closely related to the fundamental phenomenon of the conversion of light energy to chemical energy in the process of photosynthesis. REFERENCESTimiriazev, K. A. “Solntse, zhizn’ i khlorofill.” Izbr. soch., vol. 1. Moscow, 1948.Godnev, T. N. Stroenie khlorofilla i metody ego kolichestvennogo opredeleniia. Minsk, 1952. Khlorofill: Sb. st. Minsk, 1974. Krasnovskii, A. A. Preobrazovanie energii sveta pri fotosinteze: Molekuliarnye mekhanizmy. Moscow, 1974. (Bakhovskie chteniia, 29.) Vernon, L. P., and G. R. Sealy. The Chlorophylls. New York–London, 1966. A. A. KRASNOVSKII chlorophyll[′klȯr·ə‚fil]chlorophyll(US), chlorophylchlorophyllchlorophyll[klor´o-fil]chlor·o·phyll(klōr'ō-fil),See also: phorbin. chlorophyll(klôr′ə-fĭl)chlorophyllBiologyThe green plant pigment pivotal in photosynthesis, the manufacture of carbohydrates from CO2 and H2O. Fringe nutrition While chlorophyll resembles haemoglobin chemically, it has no role in human metabolism; there is, therefore, no basis for using chlorophyll to treat allergies, anaemia, arthritis, colitis, coughs, hypertension, infections, ulcers, and many other conditions, as has been recommended by some alternative medical practitioners. chlor·o·phyll(klōr'ō-fil)chlorophylla group of pigments giving a green coloration to most plants, which is found in any part of the plant that is exposed to sunlight. The pigments are usually contained in cell organelles called CHLOROPLASTS. Chlorophyll is a PORPHYRIN containing magnesium and exists in several forms which have different side chains. Typically, chlorophylls a (blue-green) and b (yellow-green) are found in higher plants; chlorophylls c and d are found in algae. Chlorophyll has the vital function of absorbing light energy for PHOTOSYNTHESIS. see ACTION SPECTRUM. A related pigment, BACTERIOCHLOROPHYLL, containing manganese instead of magnesium, is found in photosynthetic bacteria.chlor·o·phyll(klōr'ō-fil)chlorophyll
Synonyms for chlorophyll
|
|||
随便看 |
|
英语词典包含2567994条英英释义在线翻译词条,基本涵盖了全部常用单词的英英翻译及用法,是英语学习的有利工具。