请输入您要查询的英文单词:

 

单词 cosmic dust
释义

cosmic dust


cosmic dust

n. Clouds of fine particles of matter in interstellar and interplanetary space.

cosmic dust

n (Astronomy) fine particles of solid matter occurring throughout interstellar space and often collecting into clouds of extremely low density. See also nebula1

cos′mic dust′


n. fine particles of matter in space. [1925]
Thesaurus
Noun1.cosmic dust - clouds of particles or gases occurring throughout interstellar spaceextragalactic nebula, galaxy - (astronomy) a collection of star systems; any of the billions of systems each having many stars and nebulae and dust; "`extragalactic nebula' is a former name for `galaxy'"cloud - any collection of particles (e.g., smoke or dust) or gases that is visible
Translations
polvere cosmica

cosmic dust


cosmic dust

Small particles or grains of matter found in many regions of space. Their size ranges from about 10 μm to less than 0.01 μm. They are thought to be composed primarily of carbon and silicate material, which may in some cases have mantles of water and ammonia ice or of solid carbon dioxide. Within the Solar System they are associated with the zodiacal light. In the interstellar medium they are found in molecular clouds and dark nebulae, causing interstellar extinction. The grains are also found in circumstellar shells causing the infrared excess seen in the spectrum of many stars.

Cosmic Dust

 

particles of matter in interstellar and inter-planetary space. Light-absorbing aggregations of cosmic dust are visible as dark spots in photographs of the Milky Way. Attenuation of light by cosmic dust—interstellar absorption, or extinction—is not the same for electromagnetic waves of different wavelengths λ, which leads to the observed reddening of stars. The extinction in the visible range is approximately proportional to λ-1, whereas in the near ultraviolet region it is almost independent of the wavelength; an additional absorption maximum, however, is observed at 1400 Å. Much of the extinction is explained by the scattering of light rather than by the absorption of light. This follows from the observations of reflection nebulae, which contain cosmic dust and may be observed around the stars of spectral class B and some other stars that are sufficiently bright to illuminate the dust. A comparison of the brightness of the nebulae and of the surrounding stars shows that the albedo of the dust is large.

The observed extinction and albedo lead to the conclusion that cosmic dust consists of dielectric particles with an admixture of metal particles somewhat less than 1 jbtm in size. The ultraviolet extinction maximum may be explained by the fact that the interior of the dust particles contains graphite flakes measuring about 0.05 X 0.05 X 0.01 ju, m. Diffraction of light by the particles, which are of comparable dimensions to the wavelength, causes the light to scatter primarily in the forward direction. Interstellar absorption frequently leads to light polarization, which may be explained by the anisotropy of the properties of the dust particles (elongated shape of the dielectric particles, or anisotropy of the conductivity of graphite) and by the ordered orientation of the particles in space. The latter may be attributed to the action of the weak interstellar field, which orients the dust particles with their long axis at right angles to the lines of force. Thus, the orientation of the field in interstellar space may be deduced from the observations of the polarized light from remote celestial objects.

The relative quantity of dust may be determined from the magnitude of mean light absorption in the galactic plane of the Milky Way Galaxy, which ranges from 0.5 to several stellar magnitudes per kiloparsec in the visible region of the spectrum. The mass of the dust is about 1 percent of the mass of interstellar matter. Dust, like gas, is distributed nonuniformly, forming clouds and denser formations called globules. Dust acts as a cooling factor in globules, screening stellar light and emitting the energy acquired from inelastic collisions with gaseous atoms in the infrared region. Recombination of atoms into molecules occurs at the surface of the dust particles, which act as catalysts.

Dust is apparently formed by the condensation of gaseous molecules on the nuclei—particles of graphite, SiO2, and other materials—in interstellar space. The nuclei themselves are formed in the atmosphere of cold giant stars and in the expanding shells of supernovas; the expansion of supernovas leads to cooling and to the condensation of molecules. Some of the dust may condense into planets during the formation of stars in a dense cloud.

REFERENCES

Bakulin, P. L, E. V. Kononovich, and V. I. Moroz. Kurs obshchei astronomii, 2nd ed. Moscow, 1970.
Greenberg, J. M. Mezhzvezdnaia pyl’. Moscow, 1970. (Translated from English.)

S. B. PIKEL’NER

cosmic dust

[′käz·mik ′dəst] (astronomy) Fine particles of solid matter forming clouds in interstellar space.

cosmic dust


Related to cosmic dust: Interstellar dust
  • noun

Words related to cosmic dust

noun clouds of particles or gases occurring throughout interstellar space

Related Words

  • extragalactic nebula
  • galaxy
  • cloud
随便看

 

英语词典包含2567994条英英释义在线翻译词条,基本涵盖了全部常用单词的英英翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2022 Newdu.com All Rights Reserved
更新时间:2025/2/27 21:44:53