请输入您要查询的英文单词:

 

单词 automation
释义

automation


automation

a mechanical device that functions automatically; the process of automating
Not to be confused with:automaton – a mechanical figure that acts as if by its own power; robot; one who acts in a routine manner without apparent active intelligence

au·to·ma·tion

A0537700 (ô′tə-mā′shən)n.1. The automatic operation or control of equipment, a process, or a system.2. The techniques and equipment used to achieve automatic operation or control.3. The condition of being automatically controlled or operated.
[From automatic.]
au′to·ma′tive adj.

automation

(ˌɔːtəˈmeɪʃən) n1. (General Engineering) the use of methods for controlling industrial processes automatically, esp by electronically controlled systems, often reducing manpower2. (General Engineering) the extent to which a process is so controlled

au•to•ma•tion

(ˌɔ təˈmeɪ ʃən)

n. 1. the technique, method, or system of operating or controlling a process by highly automatic means, as by electronic devices, reducing human intervention to a minimum. 2. the act or process of automating or making automatic. 3. the state of being automated. [1945–50; autom (atic oper) ation]

Automation


automobilismthe use or care of automobiles. — automobilist, n.automobility, n.bionics1. the science or study of how man and animals perform tasks and solve certain types of problems involving use of the body.
2. the application of this study to the design of computer-driven and other automated equipment.
3. the application of this study to the design of artificial limbs, organs, and other prosthetic devices. — bionic, adj.
computeresethe jargon or language typical of those involved with computers.cyberneticsthe comparative study of complex electronic devices and the nervous system in an attempt to understand better the nature of the human brain. — cyberneticist, n.cybernetic, adj.roboticsthe application of automated machinery to tasks traditionally done by hand, as in manufacturing.robotismthe use of automated machinery or manlike mechanical devices to perform tasks. — robotistic, adj.servomechanisma closed-circuit feedback system used in the automatic control of machines, involving an error-sensor using a small amount of energy, an amplifier, and a servomotor dispensing large amounts of power. Also called servo. — servomechanical, adj.
Thesaurus
Noun1.automation - the act of implementing the control of equipment with advanced technologyautomation - the act of implementing the control of equipment with advanced technology; usually involving electronic hardware; "automation replaces human workers by machines"mechanisation, mechanizationcomputerization, cybernation - the control of processes by computerhigh tech, high technology - highly advanced technological development (especially in electronics)
2.automation - the condition of being automatically operated or controlled; "automation increases productivity"condition, status - a state at a particular time; "a condition (or state) of disrepair"; "the current status of the arms negotiations"
3.automation - equipment used to achieve automatic control or operationautomation - equipment used to achieve automatic control or operation; "this factory floor is a showcase for automation and robotic equipment"equipment - an instrumentality needed for an undertaking or to perform a service
Translations
自动化

automatic

(oːtəˈmatik) adjective1. (of a machine etc) working by itself. an automatic washing-machine. 自動的 自动的2. (of an action) without thinking. an automatic response. 不加思索的 不假思索的,无意识的 noun a self-loading gun. He has two automatics and a rifle. 自動手(步)槍 自动枪ˈautomated (-mei-) adjective working by automation. 自動(化)的 自动(化)的 ˌautoˈmatically adverbThis machine works automatically; He answered automatically. 自動地 自动地ˌautoˈmation noun (in factories etc) the use of machines, especially to work other machines. Automation has resulted in people losing their jobs. 自動化 自动化automaton (oːˈtomətən) plurals auˈtomata (-tə) , auˈtomatons noun a human-shaped machine that can be operated to move by itself. 自動機械裝置,機器人 自动机器,机器人

automation


automation,

automatic operation and control of machinery or processes by devices, such as robots that can make and execute decisions without human intervention. The principal feature of such devices is their use of self-correcting control systemscontrol systems,
combinations of components (electrical, mechanical, thermal, or hydraulic) that act together to maintain actual system performance close to a desired set of performance specifications. Open-loop control systems (e.g.
..... Click the link for more information.
 that employ feedbackfeedback,
arrangement for the automatic self-regulation of an electrical, mechanical, or biological system by returning part of its output as input. A simple example of feedback is provided by a governor on an engine; if the speed of the engine exceeds a preset limit, the
..... Click the link for more information.
, i.e., they use part of their output to control their input. Once the automated process is set up, human participation in the manufacturing process involves little more than maintenance and repair of the equipment.

In a typical automated manufacturing process, the feeding in of materials, the machine operation, the transfers from one machine to another, the final assembly, the removal, and the packing are all done automatically. In some automated manufacturing, a single robot with interchangeable tool heads performs all of the various manufacturing assignments. At various stages in the operation are inspection devices that reject substandard products and adjust the machinery to correct any malfunction. Since electronic computerscomputer,
device capable of performing a series of arithmetic or logical operations. A computer is distinguished from a calculating machine, such as an electronic calculator, by being able to store a computer program (so that it can repeat its operations and make logical
..... Click the link for more information.
 are able to store, select, record, and present data systematically, they are widely used to direct automated systems.

Automation is applied to the manufacture of foodstuffs, chemicals, pharmaceuticals, textiles, electronics, and many other goods, and is used in steel mills, automobile factories, printing plants, coal mines, package-handling facilities, and other workplaces. Another application is its use in the launching, aiming, and guidance of military rockets and other weapons. Automation has also been applied to information handling, resulting in automatically prepared bills and reports, computerized stock trading and typesetting, and the solution of many engineering problems. It offers high quality products together with great savings in costs, but the consequences of the loss of jobs due to automation can have significant societal effects, especially in smaller and moderately sized communities.

See also roboticsrobotics,
science and technology of general purpose, programmable machine systems. Contrary to the popular fiction image of robots as ambulatory machines of human appearance capable of performing almost any task, most robotic systems are anchored to fixed positions in factories
..... Click the link for more information.
; computer-aided manufacturingcomputer-aided manufacturing
(CAM), a form of automation where computers communicate work instructions directly to the manufacturing machinery. The technology evolved from the numerically controlled machines of the 1950s, which were directed by a set of coded instructions
..... Click the link for more information.
.

Bibliography

See P. Senker, Toward the Automatic Factory? The Need for Training (1986); D. I. Cleland and Bapaya Bidando, Factory Automation Handbook (1990).

automation

The use of electronic equipment, especially computer systems, for the automatic control of instruments and processes and for automatically acquiring and processing information. The applications in astronomy include positioning and tracking of telescopes, direct control of instruments associated with telescopes, the storage of information and its reduction by sampling or simple analysis, and the processing of the information. See also computing; imaging; remote operation.

automation

any form of industrial production in which the productive process is carried out substantially or entirely by machines, with a consequent reduction in the requirement for routine manual labour. As the undertaking and control of productive processes in this manner has become more commonplace (especially with the development of computer technology), the term has tended to fall out of use, being replaced by other general terms such as INFORMATION TECHNOLOGY or simply NEW TECHNOLOGY.

Both popular and sociological debate about automation have been concerned with its consequences for levels of employment: whether it will lead to an overall decline in the requirement for labour, increases in unemployment, the onset of a new age of LEISURE, and so on. What seems clear, however, is that while it may involve a decrease in the demand for unskilled or routine forms of manual labour, the demand for educated labour – necessary in the design and maintenance of the new machines and in the management of the new processes -is likely to increase. However, how far these new jobs will themselves tend to become routinized (e.g. involve routine keyboard work) remains an unresolved issue (see DESKILLING). The implications of automation and new technology for overall

Automation

 

a branch of science and technology dealing with the theory and design principles of control systems which operate without direct human participation; in a narrow sense, it is an aggregate of methods and technological facilities that obviate human participation when carrying out operations of a specified process. Automation was recognized as an independent technological field at the Second World Power Conference (Berlin, 1930), where a section was created for automatic and remote control problems. The term “automation” became common in the USSR in the early 1930’s.

Automation arose as a science based on the theory of automatic regulation which was established in the works of J. C. Maxwell (1868), I. A. Vyshnegradskii (1872–78), A. Stodola (1899), and others; it was formulated into an independent scientific and technical discipline in 1940. The history of automation as a branch of technology is closely associated with the development of automatons, automatic devices, and automated complexes. In the process of its formation, automation drew on theoretical mechanics and the theory of electrical circuits and systems. It solved problems associated with regulating pressure in steam boilers, the piston stroke in steam engines, and the rotation speed in electrical machines, in addition to problems in operational control of automatic machine tools, automatic telephone exchanges, and relay protection devices. Correspondingly, the technical facilities of automation in this period were developed and used in connection with automatic regulating systems. The intensive development of all branches of science and technology in the mid-20th century also induced a rapid growth in the technology of automatic control whose applications are becoming universal.

The second half of the 20th century was marked by further improvement of the technical facilities of automation and a broad but uneven distribution in various areas of the national economy of automatic control arrangements with a transition to more complex automatic control systems, especially in industry; automation of individual units was replaced by integrated automation of shops and factones. An important feature is the use of automation for objects at great distances from one another, such as large industrial and power complexes and control systems for spacecraft. Communication between the individual installations of such systems is achieved through remote control facilities which are combined with control equipment and controlled objects to form remote-controlled automatic systems. Of great significance here are the technical (including remote control) means for collecting and automatically processing information because many problems in complicated automatic control systems can be solved only with the aid of computer technology. Finally, the theory of automatic regulation is giving way to the generalized theory of automatic control, which unifies all the theoretical aspects of automation and forms a basis for a general theory of control.

G. I. BELOV

automation

[‚ȯd·ə′mā·shən] (engineering) The use of technology to ease human labor or extend the mental or physical capabilities of humans. The mechanisms, machines, and systems that save or eliminate labor, or imitate actions typically associated with human beings.

Automation

The process of having a machine or machines accomplish tasks hitherto performed wholly or partly by humans. As used here, a machine refers to any inanimate electromechanical device such as a robot or computer. As a technology, automation can be applied to almost any human endeavor, from manufacturing to clerical and administrative tasks. An example of automation is the heating and air-conditioning system in the modern household. After initial programming by the occupant, these systems keep the house at a constant desired temperature regardless of the conditions outside.

The fundamental constituents of any automated process are (1) a power source, (2) a feedback control mechanism, and (3) a programmable command (see illustration) structure. Programmability does not necessarily imply an electronic computer. For example, the Jacquard loom, developed at the beginning of the nineteenth century, used metal plates with holes to control the weaving process. Nonetheless, the advent of World War II and the advances made in electronic computation and feedback have certainly contributed to the growth of automation. While feedback is usually associated with more advanced forms of automation, so-called open-loop automated tasks are possible. Here, the automated process proceeds without any direct and continuous assessment of the effect of the automated activity. For example, an automated car wash typically completes its task with no continuous or final assessment of the cleanliness of the automobile. See Control systems, Digital computer

Elements of an automated systemElements of an automated system

Because of the growing ubiquity of automation, any categorization of automated tasks and processes is incomplete. Nonetheless, such a categorization can be attempted by recognizing two distinct groups, automated manufacturing and automated information processing and control. Automated manufacturing includes automated machine tools, assembly lines, robotic assembly machines, automated storage-retrieval systems, integrated computer-aided design and computer-aided manufacturing (CAD/CAM), automatic inspection and testing, and automated agricultural equipment (used, for example, in crop harvesting). Automated information processing and control includes automatic order processing, word processing and text editing, automatic data processing, automatic flight control, automatic automobile cruise control, automatic airline reservation systems, automatic mail sorting machines, automated planet exploration (for example, the rover vehicle, Sojourner, on the Mars Pathfinder mission), automated electric utility distribution systems, and automated bank teller machines. See Computer-aided design and manufacturing, Computer-integrated manufacturing, Flexible manufacturing system, Inspection and testing

A major issue in the design of systems involving both human and automated machines concerns allocating functions between the two. This allocation can be static or dynamic. Static allocation is fixed; that is, the separation of responsibilities between human and machine do not change with time. Dynamic allocation implies that the functions allocated to human and machine are subject to change. Historically, static allocation began with reference to lists of activities which summarized the relative advantages of humans and machines with respect to a variety of activities. For example, at present humans appear to surpass machines in the ability to reason inductively, that is, to proceed from the particular to the general. Machines, however, surpass humans in the ability to handle complex operations and to do many different things at once, that is, to engage in parallel processing. Dynamic function allocation can be envisioned as operating through a formulation which continuously determines which agent (human or machine) is free to attend to a particular task or function. In addition, constraints such as the workload implied by the human attending to the task as opposed to the machine can be considered. See Human-factors engineering

It has long been the goal in the area of automation to create systems which could react to unforeseen events with reasoning and problem-solving abilities akin to those of an experienced human, that is, to exhibit artificial intelligence. Indeed, the study of artificial intelligence is devoted to developing computer programs that can mimic the product of intelligent human problem solving, perception, and thought. For example, such a system could be envisioned to perform much like a human copilot in airline operations, communicating with the pilot via voice input and spoken output, assuming cockpit duties when and where assigned, and relieving the pilot of many duties. Indeed, such an automated system has been studied and named a pilot's associate. Machines exhibiting artificial intelligence obviously render the sharp demarcation between functions better performed by humans than by machines somewhat moot. While the early promise of artificial intelligence has not been fully realized in practice, certain applications in more restrictive domains have been highly successful. These include the use of expert systems, which mimic the activity of human experts in limited domains, such as diagnosis of infectious diseases or providing guidance for oil exploration and drilling. Expert systems generally operate by (1) replacing human activity entirely, (2) providing advice or decision support, or (3) training a novice human in a particular field. See Expert systems

automation

1. the use of methods for controlling industrial processes automatically, esp by electronically controlled systems, often reducing manpower 2. the extent to which a process is so controlled

automation

Automatic, as opposed to human, operation or control of aprocess, equipment or a system; or the techniques andequipment used to achieve this. Most often applied tocomputer (or at least electronic) control of a manufacturingprocess.

See also design automation, office automation,manularity, Manufacturing Automation Protocol, PEARL,QBE.

automation

Replacing manual operations with electronics and computer-controlled devices. For example, "office automation" replaced manual typewriters, filing cabinets and paper appointment books with computer applications. Tape and disk libraries have been called "automation systems" because robotic arms pick cartridges out of a stacker and move them to the drives.

Robots continue to replace human workers in factories; online learning displaces teachers, and computer-based systems of all kinds are slowly but surely eliminating jobs. At some future time when self-driving cars take off for public transportation, millions of jobs are expected to disappear around the globe. In fact, it has been estimated that as many as half of today's jobs in the U.S. will be replaced by automation by 2050. In the 21st century, educating and retraining people for high-tech employment is essential. See automator, robot, computer ethics, naming fiascos, automagic and automata theory.


A Vision of Automation (circa 1895)
More than a hundred years ago, the concept of the future lacked a major ingredient... the computer! Artist unknown. (Image courtesy of Rosemont Engineering.)

automation


automation

(ot″ŏ-mā′shŏn) An automatically controlled operation of an apparatus or system by mechanical or electronic devices that take the place of human elements of observation, effort, and decision making.

laboratory automation

The use of clinical laboratory instruments that assay large numbers of samples with minimal human intervention.

automation


Automation

The use of machinery, rather than persons, to complete a task. Automation has become increasingly common with leaps in technology that occurred in the 19th and 20th centuries. Automation is thought to have increased efficiency; for example, it made mass production of goods possible. Critics contend, however, that it renders jobs obsolete, undermining workers and reducing people's knowledge of how to "do" things. See also: Industrial Revolution.

automation

the use of mechanical or electrical machines such as robots to undertake frequently-repeated PRODUCTION processes to make them self-regulating, thus avoiding human intervention in these processes. Automation often involves high initial capital investment but, by reducing labour costs, cuts VARIABLE COST per unit.

Automation can be applied to mass production, PRODUCTION-LINE operations which are performed in a fixed sequence with high volumes but in a relatively inflexible way, where changes in the process to accommodate product changes are difficult and costly to implement (fixed automation). Automation can also be applied to lower volume BATCH PRODUCTION type operations, allowing in this case for greater flexibility in accommodating product changes by reprogramming the numerically-controlled machine's/robot's instructions to facilitate rapid changeovers (flexible or programmable automation). See FLEXIBLE MANUFACTURING SYSTEM.

automation

the use of mechanical or electrical machines, such as robots, to undertake frequently repeated production processes to make them self-regulating, thus minimizing or eliminating the use of labour in these processes. Automation often involves high initial capital investment but, by reducing labour costs, cuts VARIABLE COST per unit. See FLEXIBLE MANUFACTURING SYSTEM, PRODUCTIVITY, TECHNOLOGICAL PROGRESSIVENESS, CAPITAL-LABOUR RATIO, MASS PRODUCTION, COMPUTER.

automation


Related to automation: Office automation, Home automation
  • noun

Synonyms for automation

noun the act of implementing the control of equipment with advanced technology

Synonyms

  • mechanisation
  • mechanization

Related Words

  • computerization
  • cybernation
  • high tech
  • high technology

noun the condition of being automatically operated or controlled

Related Words

  • condition
  • status

noun equipment used to achieve automatic control or operation

Related Words

  • equipment
随便看

 

英语词典包含2567994条英英释义在线翻译词条,基本涵盖了全部常用单词的英英翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2022 Newdu.com All Rights Reserved
更新时间:2025/3/16 9:00:37