uniformly convex space


uniformly convex space

[¦yü·nə‚fȯrm·lē ¦kän‚veks ′spās] (mathematics) A normed vector space such that for any number ε > 0 there is a number δ > 0 such that, for any two vectors x and y, if │ x │ ≤ 1 + δ, │ y │ ≤ 1 + δ, and │ x + y │ > 2, then │ x-y │ < ε.="" also="" known="" as="" uniformly="" rotund="">