magnet
magnet
mag·net
M0028600 (măg′nĭt)magnet
(ˈmæɡnɪt)mag•net
(ˈmæg nɪt)n.
mag·net
(măg′nĭt)magnet
Noun | 1. | ![]() |
2. | ![]() |
单词 | magnet | |||||||||||||
释义 | magnetmagnetmag·netM0028600 (măg′nĭt)magnet(ˈmæɡnɪt)mag•net(ˈmæg nɪt)n. mag·net(măg′nĭt)magnet
magnet(ˈmӕgnit) nounmagnet→ 磁铁zhCNmagnetbabe magnetchick magnetnerd magnetbabe magnetand chick magnetchick magnetverbnerd magnetmagnetmagnet:see electromagnetelectromagnet,device in which magnetism is produced by an electric current. Any electric current produces a magnetic field, but the field near an ordinary straight conductor is rarely strong enough to be of practical use. ..... Click the link for more information. ; magnetismmagnetism, force of attraction or repulsion between various substances, especially those made of iron and certain other metals; ultimately it is due to the motion of electric charges. ..... Click the link for more information. . MagnetAn object or device that produces a magnetic field. Magnets are essential for the generation of electric power and are used in motors, generators, labor-saving electromechanical devices, information storage, recording, and numerous specialized applications, for example, seals of refrigerator doors. The magnetic fields produced by magnets apply a force at a distance on other magnets, charged particles, electric currents, and magnetic materials. Magnets may be classified as either permanent or excited. Permanent magnets are composed of so-called hard magnetic material, which retains an alignment of the magnetization in the presence of ambient fields. Excited magnets use controllable energizing currents to generate magnetic fields in either electromagnets or air-cored magnets. See Ferromagnetism, Superconductivity The essential characteristic of permanent-magnet materials is an inherent resistance to change in magnetization over a wide range of field strength. Resistance to change in magnetization in this type of material is due to two factors: (1) the material consists of particles smaller than the size of a domain, a circumstance which prevents the gradual change in magnetization which would otherwise take place through the movement of domain wall boundaries; and (2) the particles exhibit a marked magnetocrystalline anisotropy. During manufacture the particles are aligned in a magnetic field before being sintered or bonded in a soft metal or polyester resin. Compounds of neodymium, iron, and boron are used. Electromagnets rely on magnetically soft or permeable materials which are well annealed and homogeneous so as to allow easy motion of domain wall boundaries. Ideally the coercive force should be zero, permeability should be high, and the flux density saturation level should be high. Coincidentally the hysteresis energy loss represented by the area of the hysteresis curve is small. This property and high electrical resistance (for the reduction of eddy currents) are required where the magnetic field is to vary rapidly. This is accomplished by laminating the core and using iron alloyed with a few percent silicon that increases the resistivity. Electromagnets usually have an energizing winding made of copper and a permeable iron core. Applications include relays, motors, generators, magnetic clutches, switches, scanning magnets for electron beams (for example, in television receivers), lifting magnets for handling scrap, and magnetic recording heads. Special iron-cored electromagnets designed with highly homogeneous fields are used for special analytical applications in, for example, electron or nuclear magnetic resonance, or as bending magnets for particle accelerators. See Magnetic resonance, Particle accelerator Air-cored electromagnets are usually employed above the saturation flux density of iron (about 2 T); at lower fields, iron-cored magnets require much less power because the excitation currents needed then are required only to generate a small field to magnetize the iron. The air-cored magnets are usually in the form of a solenoid with an axial hole allowing access to the high field in the center. The conductor, usually copper or a copper alloy, must be cooled to dissipate the heat generated by resistive losses. In addition, the conductor and supporting structure must be sufficiently strong to support the forces generated in the magnet. In pulsed magnets, higher fields can be generated by limiting the excitation to short pulses (usually furnished by the energy stored in a capacitor bank) and cooling the magnet between pulses. The highest fields are generally achieved in small volumes. A field of 75 T has been generated for 120 microseconds. Large-volume or high-field magnets are often fabricated with superconducting wire in order to avoid the large resistive power losses of normal conductors. The two commercially available superconducting wire materials are (1) alloys of niobium-titanium, a ductile material which is used for generating fields up to about 9 T; and (2) a brittle alloy of niobium and tin (Nb3Sn) for fields above 9 T. Practical superconducting wires use complex structures of fine filaments of superconductor that are twisted together and embedded in a copper matrix. The conductors are supported against the electromagnetic forces and cooled by liquid helium at 4.2 K (-452°F). A surrounding thermal insulating enclosure such as a dewar minimizes the heat flow from the surroundings. Superconducting magnets operating over 20 T have been made with niobium-titanium outer sections and niobium-tin inner sections. Niobium-titanium is used in whole-body nuclear magnetic resonance imaging magnets for medical diagnostics. Other applications of superconducting magnets include their use in nuclear magnetic resonance for chemical analysis, particle accelerators, containment of plasma in fusion reactors, magnetic separation, and magnetic levitation. See Nuclear fusion, Superconducting devices The highest continuous fields are generated by hybrid magnets. A large-volume (lower-field) superconducting magnet that has no resistive power losses surrounds a water-cooled inner magnet that operates at the highest field. The fields of the two magnets add. Over 35 T has been generated continuously. Magneta term applied to all substances in considering their magnetic properties. The diversity of the types of magnets is due to the difference in the magnetic properties of the microparticles that form matter and to the difference in the character of the interaction between them. Magnets are classified according to the magnitude and sign of their magnetic susceptibility x (substances for which ×< 0 are called diamagnetics; for ×> 0, paramagnetics; and for X »1, ferromagnetics). A more thorough physical classification of magnets is based on an examination of the nature of microparticles that have magnetic moments, their interaction in matter, and the influence of external factors on magnets. What does it mean when you dream about a magnet?Magnets represent a pulling closer to things that need to be examined or drawn out of the unconscious. They also represent a certain kind of personal power, or personal “magnetism.” They sometimes also represent being inexplicably drawn to something, as if by some mysterious magnetic force. magnet[′mag·nət]MagnetAn object or device that produces a magnetic field. Magnets are essential for the generation of electric power and are used in motors, generators, labor-saving electromechanical devices, information storage, recording, and numerous specialized applications, for example, seals of refrigerator doors. The magnetic fields produced by magnets apply a force at a distance on other magnets, charged particles, electric currents, and magnetic materials. See Generator, Motor Magnets may be classified as either permanent or excited. Permanent magnets are composed of so-called hard magnetic material, which retains an alignment of the magnetization in the presence of ambient fields. Excited magnets use controllable energizing currents to generate magnetic fields in either electromagnets or air-cored magnets. See Electromagnet The essential characteristic of permanent-magnet materials is an inherent resistance to change in magnetization over a wide range of field strength. Resistance to change in magnetization in this type of material is due to two factors: (1) the material consists of particles smaller than the size of a domain, a circumstance which prevents the gradual change in magnetization which would otherwise take place through the movement of domain wall boundaries; and (2) the particles exhibit a marked magnetocrystalline anisotropy. During manufacture the particles are aligned in a magnetic field before being sintered or bonded in a soft metal or polyester resin. Compounds of neodymium, iron, and boron are used. Electromagnets rely on magnetically soft or permeable materials which are well annealed and homogeneous so as to allow easy motion of domain wall boundaries. Ideally the coercive force should be zero, permeability should be high, and the flux density saturation level should be high. Coincidentally the hysteresis energy loss represented by the area of the hysteresis curve is small. This property and high electrical resistance (for the reduction of eddy currents) are required where the magnetic field is to vary rapidly. This is accomplished by laminating the core and using iron alloyed with a few percent silicon that increases the resistivity. Electromagnets usually have an energizing winding made of copper and a permeable iron core. Applications include relays, motors, generators, magnetic clutches, switches, scanning magnets for electron beams (for example, in television receivers), lifting magnets for handling scrap, and magnetic recording heads. See Cathode-ray tube, Clutch, Electric switch, Relay Special iron-cored electromagnets designed with highly homogeneous fields are used for special analytical applications in, for example, electron or nuclear magnetic resonance, or as bending magnets for particle accelerators. Air-cored electromagnets are usually employed above the saturation flux density of iron (about 2 T); at lower fields, iron-cored magnets require much less power because the excitation currents needed then are required only to generate a small field to magnetize the iron. The air-cored magnets are usually in the form of a solenoid with an axial hole allowing access to the high field in the center. The conductor, usually copper or a copper alloy, must be cooled to dissipate the heat generated by resistive losses. In addition, the conductor and supporting structure must be sufficiently strong to support the forces generated in the magnet. In pulsed magnets, higher fields can be generated by limiting the excitation to short pulses (usually furnished by the energy stored in a capacitor bank) and cooling the magnet between pulses. The highest fields are generally achieved in small volumes. A field of 75 T has been generated for 120 microseconds. Large-volume or high-field magnets are often fabricated with superconducting wire in order to avoid the large resistive power losses of normal conductors. The two commercially available superconducting wire materials are (1) alloys of niobium-titanium, a ductile material which is used for generating fields up to about 9 T; and (2) a brittle alloy of niobium and tin (Nb3Sn) for fields above 9 T. Practical superconducting wires use complex structures of fine filaments of superconductor that are twisted together and embedded in a copper matrix. The conductors are supported against the electromagnetic forces and cooled by liquid helium at 4.2 K (-452°F). A surrounding thermal insulating enclosure such as a dewar minimizes the heat flow from the surroundings. Superconducting magnets operating over 20 T have been made with niobium-titanium outer sections and niobium-tin inner sections. Niobium-titanium is used in whole-body nuclear magnetic resonance imaging magnets for medical diagnostics. Other applications of superconducting magnets include their use in nuclear magnetic resonance for chemical analysis, particle accelerators, containment of plasma in fusion reactors, magnetic separation, and magnetic levitation. See Magnetic levitation, Magnetic separation methods, Nuclear fusion, Superconducting devices The highest continuous fields are generated by hybrid magnets. A large-volume (lower-field) superconducting magnet that has no resistive power losses surrounds a water-cooled inner magnet that operates at the highest field. The fields of the two magnets add. Over 35 T has been generated continuously. magnetmagnetmagnet[mag´net]mag·net(mag'net),mag·net(mag'nĕt)Patient discussion about magnetQ. who much cost the resonance magnetic machine? new or used Q. hey guys! has anyone ever tried a chinese magnet to help a diet?? Somwone I know who is a chinse medicine healer, gave me a special magnet you stick to the right thumb of your hand to help evoid snack attacks. Did you ever hear anything about it?? did iot help anyone?? MAGNET
magnet
Synonyms for magnet
|
|||||||||||||
随便看 |
|
英语词典包含2567994条英英释义在线翻译词条,基本涵盖了全部常用单词的英英翻译及用法,是英语学习的有利工具。