an ultrahigh-frequency electronic vacuum device in which a steady stream of electrons is converted to an alternating stream by modulating the electron velocities with an ultrahigh-frequency electric field while the electrons move through the gap of a cavity resonator. Modulating the velocities has the effect of grouping the electrons into bunches, owing to differences in velocity in a drift space, a section that is free from the ultrahigh-frequency field.
Two types of klystrons are in use: the floating drift and the reflex. In the floating drift klystron, electrons pass successively through the gaps of cavity resonators (see Figure 1). Velocity modulation occurs in the gap of the input resonator, the ultrahigh-frequency field in the gap periodically accelerating (half a cycle) and decelerating (half a cycle). Accelerated electrons catch up with retarded electrons in the drift space, resulting in the formation of electron bunches. In transit through the gap of the output resonator, the electron bunches interact with the resonator’s ultrahigh-frequency field; most are decelerated, and some of their kinetic energy is converted to the energy of ultrahigh-frequency oscillations.
Figure 1. Diagrams of floating-drift klystrons: (a) klystron amplifier, (b) klystron oscillator; (1) cathode, (2) focusing cylinder, (3) electron stream, (4) input cavity resonator, (5) input aperture for ultrahigh frequency energy, (6) resonator gap, (7) drift space, (8) output cavity resonator, (9) output aperture for ultrahigh frequency energy, (10) electron stream collectors, (11) intermediate cavity resonators, (12) anode DC power supply, (13) heater power supply, (14) first cavity resonator, (15) coupling slot through which some ultrahigh frequency energy passes from second resonator to first resonator, (16) second cavity resonator
In 1932, the Soviet physicist D. A. Rozhanskii investigated the idea of converting a steady electron stream to a stream of varying density, making use of the fact that accelerated electrons catch up with decelerated electrons. A method of producing high-power ultrahigh-frequency oscillation based on this idea was proposed by the Soviet physicist A. N. Arsen’eva, jointly with the German physicist O. Heil, in 1935. Actual floating drift klystrons were first designed and built by the American physicists W. Hahn and G. Metcalf (and, independently, by R. and Z. Varian).
Most floating drift klystrons are manufactured as multicavity klystron amplifiers (see Figure 1, a). Intermediate cavity resonators located between the input resonator and the output resonator make it possible to broaden the frequency pass band, increase efficiency, and increase gain. Klystron amplifiers are built for operation in narrow frequency ranges of the decimeter or centimeter wavelengths. Pulse-mode klystrons have an output from several hundred watts (W) to 40 megawatts (MW); continuous-mode klystrons, from a few watts to 1 MW. The gain usually runs from 35 to 60 decibels (dB). Efficiency varies from 40 to 60 percent. The pass band is less than 1 percent in the continuous mode and up to 10 percent in pulse mode. The principal areas of application of klystron amplifiers are in Doppler radar, communications with earth satellites, radioastronomy, and television (continuous-mode klystrons), as well as in linear acceleration of elementary particles and power output amplification in longdistance high-resolution radar (pulse-mode klystrons).
A small number of industrially manufactured klystrons are continuous-mode klystron oscillators, usually with two cavity resonators (see Figure l,b). A small fraction of the ultrahigh-frequency oscillatory power generated in the second resonator is transmitted through a coupling slot to the first resonator in order to modulate electron velocities. The typical output of such klystrons is from 1 to 10 W, and their efficiency is less than 10 percent. Klystron oscillators are used mainly in parametric amplifiers and in radio beacons with wavelengths in the centimeter or millimeter range.
Figure 2. Diagram of a reflex klystron: (1) cathode, (2) focusing cylinder, (3) electron stream, (4) accelerating grid, (5) cavity resonator, (6) resonator gap, (7) reflector, (8) second resonator grid, (9) first resonator grid, (10) vacuum-tight ceramic window serving as lead-out for ultrahigh frequency energy from resonator, (11) resonator voltage supply, (12) heater power supply, (13) reflector voltage supply
Reflex klystrons are those in which the electron stream, having passed through the resonator gap, arrives at the decelerating field of the reflector, to be repelled by the field and pass through the resonator gap in the opposite direction (see Figure 2). During the first transit through the gap, the ultrahigh frequency electric field of the gap modulates the electron velocities. The second time, moving in the opposite direction, the electrons arrive at the gap grouped in bunches. The ultrahigh frequency field in the gap retards these bunches and converts some of their kinetic energy to the energy of ultrahigh-frequency oscillations. Electron bunches are formed because the accelerated electrons follow a longer path in the space between cavity resonator and reflector and thus spend more time there than do the decelerated electrons. If the negative reflector voltage is changed, then the electron transit time, the arrival phase of the bunches at the gap, and the frequency of oscillations generated will also be changed (see Figure 3).
Figure 3. Reflex klystron frequency and output power as a function of reflector voltage: (a) oscillation bandwidth, (b) oscillation bandwidth at half power, (f1) oscillation frequency at center of bandwidth,(∆f) frequency deviation from f1, (c) electronic tuning range at half power
The possibility of changing the frequency of oscillation is used in electronic tuning. This makes it possible to control oscillation frequency, practically inertia-free and without power loss, in frequency modulation and automatic frequency control. Mechanical frequency tuning can be accomplished by changing the gap, either by deflecting the face (a diaphragm) of a metallic klystron (see Figure 4,a) or by moving a tuning piston of a detachable part of the cavity resonator that is joined to the edges of metallic disks protruding from the klystron’s glass or ceramic shell (see Figure 4,b). In addition to this primary cavity resonator, many reflex klystrons have a second cavity resonator located outside the vacuum envelope (see Figure 4,c). Mechanical frequency tuning is accomplished in this case by moving a stub, thereby changing the gap of the second cavity resonator. Such designs make possible an unlimited number of frequency retunings. The incorporation of a high-Q resonator improves frequency stability but reduces the klystron’s output power.
Figure 4. Mechanical frequency tuning methods in a reflex klystron: (a) by deflecting diaphragm, (b) by moving piston in detachable part of cavity resonator, (c) by moving stub in cavity resonator outside vacuum envelope; (1) diaphragm whose deflection changes resonator gap (increasing the gap increases oscillation frequency), (2) edges of metal disks to which detachable part of cavity resonator is joined, (3) detachable part of resonator, (4) piston within cavity resonator (lowering decreases length of resonator and increases oscillation frequency), (5) vacuum-tight ceramic coupling window between cavity resonators, (6) stub (raising stub increases resonator gap and oscillation frequency), (7) output aperture for ultrahigh frequency energy
Reflex klystrons were developed in 1940 by the Soviet engineers N. D. Deviatkov, E. N. Danil’tsev, and I. V. Piskunov, working as a group, and, independently, by the Soviet engineer V. F. Kovalenko. The first papers on the theory of the reflex klystron were published by the Soviet physicists Ia. P. Terletskii in 1943 and S. D. Gvozdover in 1944.
Reflex klystrons are the most widely used ultrahigh-frequency device. They are manufactured for operation in the decimeter, centimeter, and millimeter wave bands. Their output power ranges from 5 mW to 5 W. Their mechanical frequency-tuning range is as much as 10 percent (for klystrons with detachable cavity resonators, several dozen percent). Their electronic tuning range is usually less than 1 percent. Their efficiency is about 1 percent. Reflex klystrons are used as heterodynes in superheterodyne radio receivers, as driving oscillators in radio transmitters, as low-power oscillators in radar, in radio navigation, and in measurement engineering.
REFERENCES
Kovalenko, V. F. Vvedenie v elektroniku sverkhvysokikh chastot, 2nd ed. Moscow, 1955.
Lebedev, I. V. Tekhnika i pribory SVCh, 2nd ed., vol. 2. Moscow, 1972.
Gaiduk, V. I., K. I. Palatov, and D. M. Petrov. Fizicheskie osnovy electroniki sverkhvysokikh chastot. Moscow, 1971.
Microwave Tube DATA Book, 28th ed. [New Jersey] 1972.V. F. KOVALENKO