请输入您要查询的英文单词:

 

单词 space-time
释义

space-time

[ speys-tahym ]
/ ˈspeɪsˈtaɪm /
SEE SYNONYMS FOR space-time ON THESAURUS.COM

noun

Also called space-time continuum. the four-dimensional continuum, having three spatial coordinates and one temporal coordinate, in which all physical quantities may be located.
the physical reality that exists within this four-dimensional continuum.

adjective

of, relating to, or noting a system with three spatial coordinates and one temporal coordinate.
noting, pertaining to, or involving both space and time: a space-time problem.

Origin of space-time

First recorded in 1910–15

Words nearby space-time

space sickness, space stage, space station, spacesuit, Space Telescope, space-time, space tourism, space travel, spacewalk, spacewoman, space writer
Dictionary.com UnabridgedBased on the Random House Unabridged Dictionary, © Random House, Inc. 2020

British Dictionary definitions for space-time

space-time

space-time continuum


noun

physics the four-dimensional continuum having three spatial coordinates and one time coordinate that together completely specify the location of a particle or an event
Collins English Dictionary - Complete & Unabridged 2012 Digital Edition © William Collins Sons & Co. Ltd. 1979, 1986 © HarperCollins Publishers 1998, 2000, 2003, 2005, 2006, 2007, 2009, 2012

Cultural definitions for space-time

space-time

The four-dimensional continuum in which all objects are located and all events occur, viewed as a single and continuous framework for existence. Space-time consists of length, width, depth, and time.

The New Dictionary of Cultural Literacy, Third Edition Copyright © 2005 by Houghton Mifflin Harcourt Publishing Company. Published by Houghton Mifflin Harcourt Publishing Company. All rights reserved.

Scientific definitions for space-time

space-time

A four-dimensional reference frame, consisting of three dimensions in space and one dimension in time, used especially in Relativity Theory as a basis for coordinate systems for identifying the location and timing of objects and events. In General Relativity, space-time is thought to be curved by the presence of mass, much as the space defined by the surface of a piece of paper can be curved by bending the paper. See more at relativity.

A Closer Look

Albert Einstein's theory of General Relativity, published in 1915, extended his theory of Special Relativity to systems that are accelerating. One of the primary causes of acceleration in the universe is gravity, and Einstein showed that the effects of acceleration are actually the same as those of the force of gravity; in fact, they are locally indistinguishable. For instance, both in an accelerating rocket in space and in a rocket standing on its launch pad on Earth, the astronauts are pushed back into their seats. Unlike Newtonian physics, which views gravity as an attractive force between all bodies in the universe, General Relativity describes the universe in terms of a continuous space-time fabric that is curved by masses located within it. In the space-time continuum of General Relativity, events are defined in terms of four dimensions: three of space, and one of time, with one coordinate for each dimension; we continuously “move” along the time dimension. What does it mean, though, for space-time to be curved? One way of conceptualizing this is to imagine just a two-dimensional space-time, with one spatial dimension and one time dimension. But instead of an infinite plane, imagine a tube, with an object's position in time defined by a coordinate of length along the tube, and position in space by a coordinate around the circumference of the tube. An object traveling uniformly through space then describes a helix along this tube, eventually returning to its starting space-coordinate position, but at a different time. (It is an open question in cosmology as to whether our universe has a similar curvature in three dimensions; if so, traveling in one direction long enough would bring you back to where you began.) An important consequence of the notion of curved space-time is that the curvature should affect all motion; thus, even light, which has no mass, should follow a curved path wherever gravity has warped space-time. An important verification of this-which made headlines around the world-took place during a solar eclipse on May 29, 1919, when it was observed that light from stars near the Sun was bent by an angle exactly predicted by the expected curvature of space-time near the massive Sun. Space-time can in principle be warped so strongly by a huge mass that any radiation emitted from the mass curves back in again and cannot escape. These huge masses are thought to exist as black holes.
The American Heritage® Science Dictionary Copyright © 2011. Published by Houghton Mifflin Harcourt Publishing Company. All rights reserved.
随便看

 

英语词典包含192737条英英释义在线翻译词条,基本涵盖了全部常用单词的英英翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2022 Newdu.com All Rights Reserved
更新时间:2025/1/24 9:30:08