释义 |
supremum Math.|s(j)uːˈpriːməm| [L., = highest, neut. of suprēmus (see supreme a. and n.).] The smallest number that is greater than or equal to each of a given set of real numbers; an analogous quantity for a subset of any other ordered set.
1940,1949[see infimum]. 1968E. T. Copson Metric Spaces i. 13 An ordered field S is said to have the supremum property if and only if every non-empty subset of S..has a supremum in S. 1971Hadley & Kemp Variational Methods in Economics ii. 53 We now define U* as the supremum of levels of utility which can be maintained indefinitely. |