释义 |
Stieltjes integral Math.|ˈstiːltʃəz| [Named after Thomas-Jan Stieltjes (1856–94), Dutch-born French mathematician, who first considered such integrals in 1894 (Ann. de la Faculté des Sci. de Toulouse VIII. j.2).] A definite integral in which the value of a function is summed, not uniformly over an interval, but in accordance with some other function which assigns weightings continuously or discontinuously within the interval.
[1910H. Lebesgue in Compt. Rend. CL. 86 On dé signe sous le nom d'integrale de Stieltjes..l'opération fonctionnelle faisant correspondre à f(x) un nombre défini de la façon suivante.] 1914Proc. London Math. Soc. XIII. 131 The definition of the integral of a continuous function with respect to a monotone increasing function given by Stieltjes..is defined to be the Stieltjes integral. 1952J. C. C. McKinsey Introd. Theory Games ix. 169 Since the Stieltjes integral is defined by means of a complicated limiting process, it should not be an occasion for surprise that it does not always exist. 1980A. J. Jones Game Theory 276 Technically we are using Stieltjes integrals here. |